COPPE/UFRJ - Departamento de Engenharia Mecânica 5 de dezembro de 2014

José Geraldo de Melo Furtado - furtado@cepel.br

Pesquisador – Área de Materiais e Sistemas Energéticos

DTE - Departamento de Tecnologias Especiais

CEPEL - Centro de Pesquisas de Energia Elétrica

Biogás e combustíveis derivados de resíduos: Conjugação de tratamento de resíduos e geração de energia

Introdução & Contexto

Cenários de Desenvolvimento Energia e Questões Ambientais Evolução dos Combustíveis

Resíduos

Combustíveis Derivados de Resíduos (CDR)
Biogás & Biometano
Tecnologias de Produção de CDR

Biogás

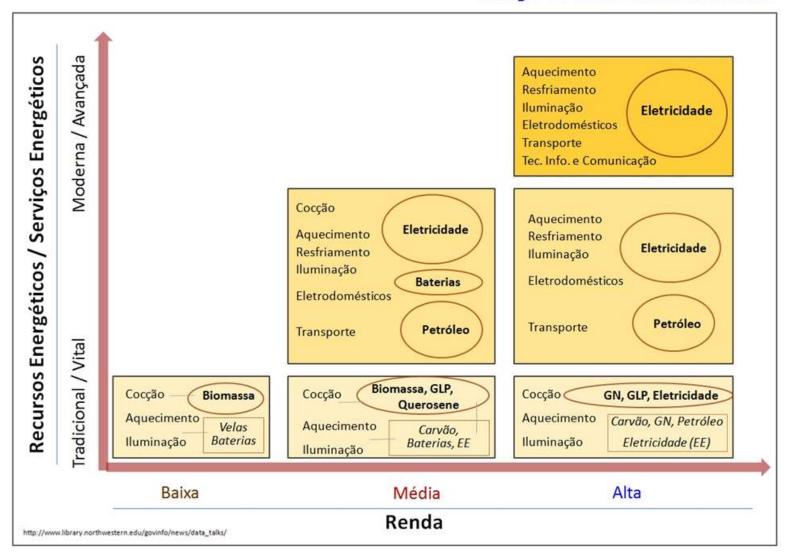
Condicionamento & Purificação Processamento Tecnologias de Geração de Energia

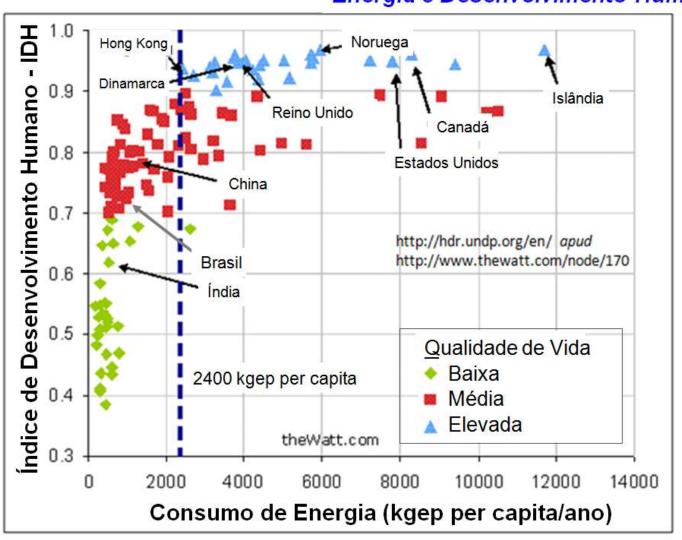
O "**Presente**" e o "**Futuro**" da disposição e uso de resíduos.

- O mundo atual é fortemente dependente de Energia Elétrica, e esta dependência só tende a aumentar;
- Combustíveis Fósseis: custos crescentes de extração e processamento – problemas geopolíticos;
- Emergência das Questões Ambientais;
- Descarbonização, Gases Energéticos e Transição para a Economia do Hidrogênio;
- <u>Eficiência Energética</u> e <u>Geração Distribuída (GD)</u> de energia elétrica.

Energia e sua Falta...

Falhas do Sistema e Apagões...

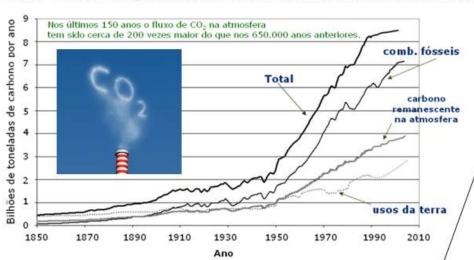




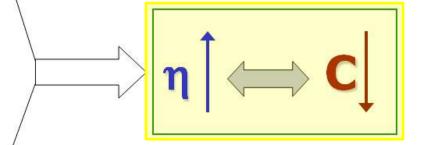
Blecaute no Nordeste dos EUA e parte do Canadá (2003): 256 plantas fora de operação/desconectadas.

Energia e Desenvolvimento Humano

Energia e Desenvolvimento Humano



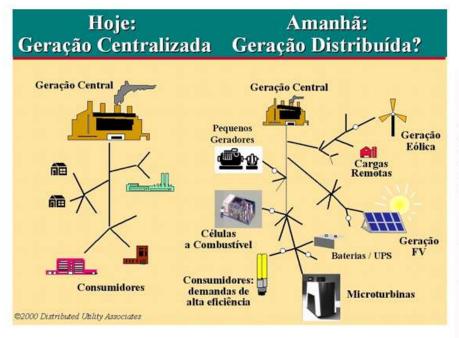
Cenário Ambiental



Fluxo de carbono para a atmosfera devido a atividades humanas

Mantendo-se a tendência, estamos indo em direção a um futuro insustentável, sujo e socioeconomicamente dispendioso.

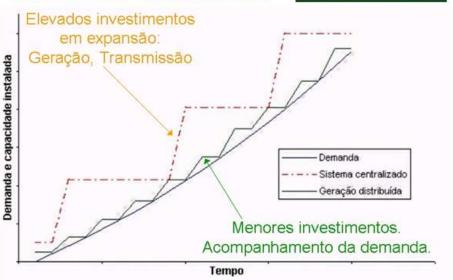
Contudo, os sistemas energéticos mudam apenas lentamente!



Necessidade de Segurança Energética é uma realidade!

> A eficiência energética é, atualmente, o melhor caminho para ajudar a proteger o ambiente!

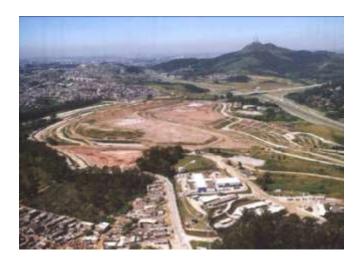
Geração de Energia: Centralizada X Distribuída (GD)


Geração (Cogeração) local de energia elétrica, descentralizada, pode estar fortemente relacionada à disponibilidade local e dispersa de um combustível (biogás, hidrogênio, ...).

Biogás é, geralmente, de produção <u>descentralizada</u> e sua produção está relacionada ao <u>tratamento sanitário de resíduos</u>, os quais são passivos ambientais com alta carga poluente.

Atividades Humanas e Resíduos

Emissões de metano em lixões a céu aberto



Substituição dos lixões por Aterros Sanitários = possibilidade de uso do

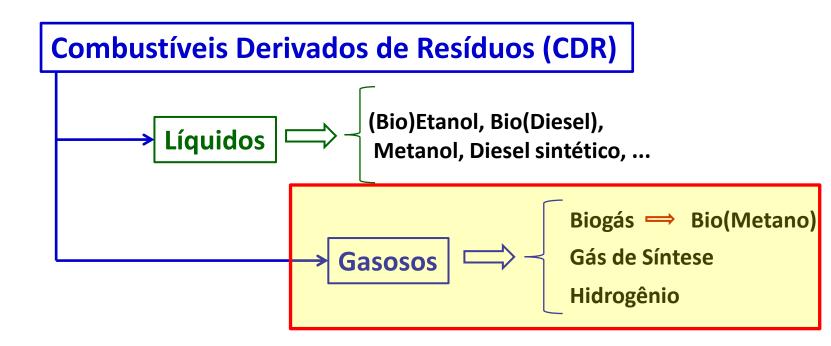
metano (GDL/GAS) para geração de energia.

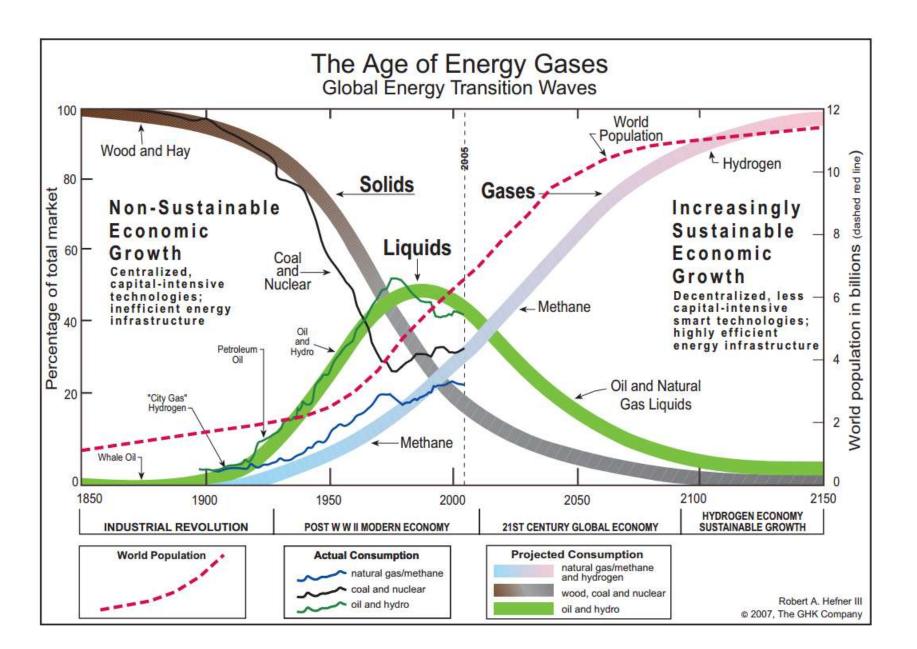
Saneamento Ambiental

Atividades Humanas e Resíduos

Atividades Humanas e Resíduos

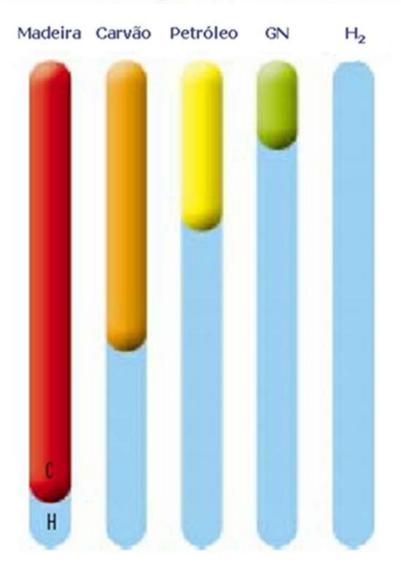
Atividades Humanas e Resíduos Disposição e manejo de resíduos agroindustriais



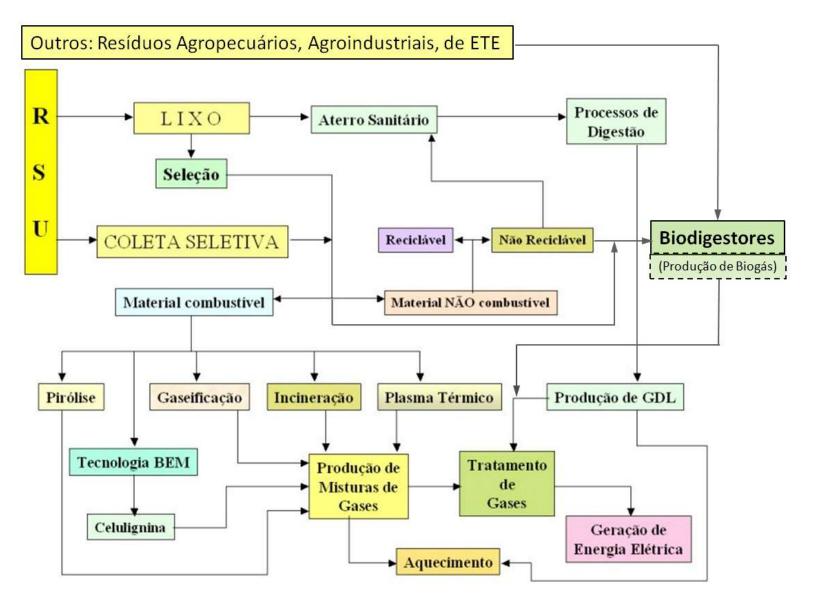


Combustíveis Derivados de Resíduos (CDR)

O aproveitamento de rejeitos e refugos de unidades de triagem, de tratamento mecânico (TM) e de tratamento mecânico e biológico (TMB) de resíduos com eventual mistura com fracções não recicláveis de resíduos não perigosos de origem não urbana permite a obtenção de Combustíveis Derivados de Resíduos (CDR) com características homogêneas e significativos poder calorífico e conteúdo biogênico, conjugando o saneamento e a gestão sustentada de resíduos com a geração de importantes insumos energéticos.



Combustíveis, Energia e Questões Ambientais



Combustíveis, Energia e Questões Ambientais

Tendência da relação H/C em combustíveis

Processamento Integrado & Geração de Energia

Biogás

resíduos agroindustriais

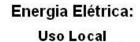
resíduos orgânicos

aterros sanitários

ETE

É a etapa crítica de todo o processo de aproveitamento energético do biogás

Produção de Biogás



Tratamento:
Condicionamento
&

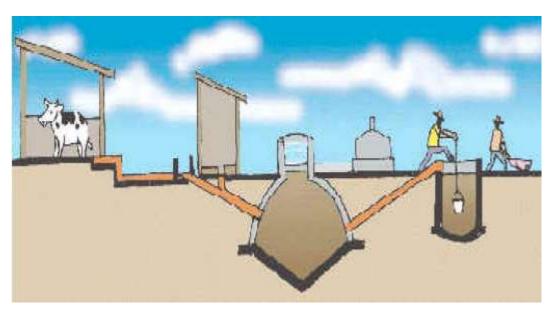
Geração (Co-geração) de Energia a partir do Biogás

ou Distribuição

Biogás

- Biogás é um recurso energético renovável com elevado potencial de redução de emissão de gases causadores do efeito estufa;
- Metano (CH_4) é o principal constituinte do Biogás, cuja emissão contribui cerca de 21 vezes mais do que o CO_2 para o aquecimento global (efeito estufa);
- O uso do Biogás na geração de energia reduz as emissões de metano e o uso de combustíveis fósseis, e a captação do metano permite a emissão de créditos de carbono (CC);
- Biogás é proveniente de:
 - Aterros Sanitários (RSU) => GAS, GDL;
 - Digestão Anaeróbia de:
 - ✓ Rejeitos orgânicos industriais;
 - ✓ Subprodutos e rejeitos agropecuários;
 - ✓ Estações de tratamento de esgotos (ETE).

Combustíveis Derivados de Resíduos BioGás


Uso de biodigestores em pequenas e médias propriedades.

Combustíveis Derivados de Resíduos BioGás

Esquema: uso de biodigestores em pequenas propriedades.

Instalações com biodigestores.

Combustíveis Derivados de Resíduos BioGás

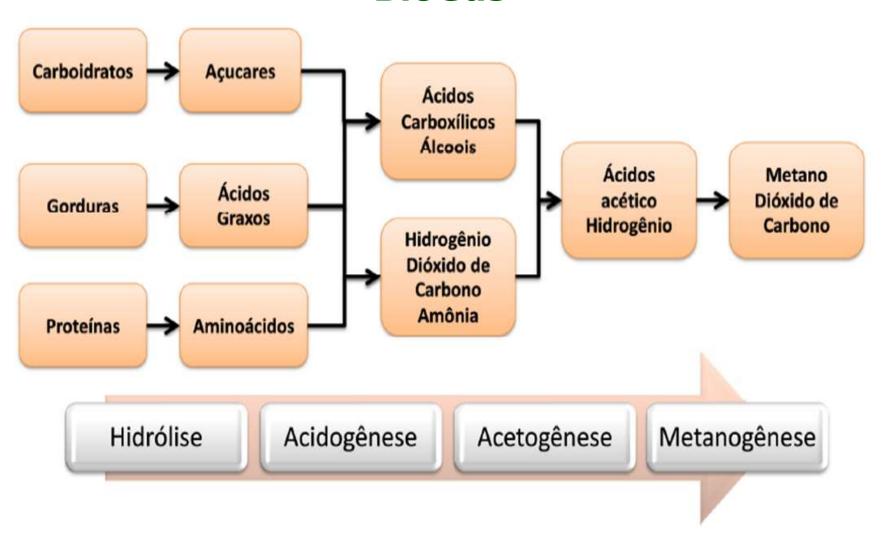
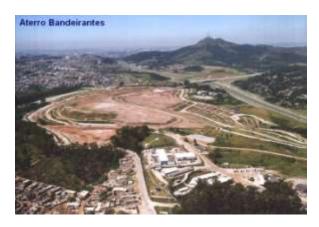



Diagrama de blocos conceitual do Processo de Biodigestão Anaeróbica [Al Seadi et al, 2008].

Emergência das Questões Ambientais Atividades Humanas e Resíduos

Metano (Biogás) produzido em Aterros Sanitários e em Biodigestores

UTE Bandeirantes, São Paulo; capacidade instalada de 22 MW, 170.000 MWh/Ano.

Biodigestor e grupos moto-geradores de pequeno porte.

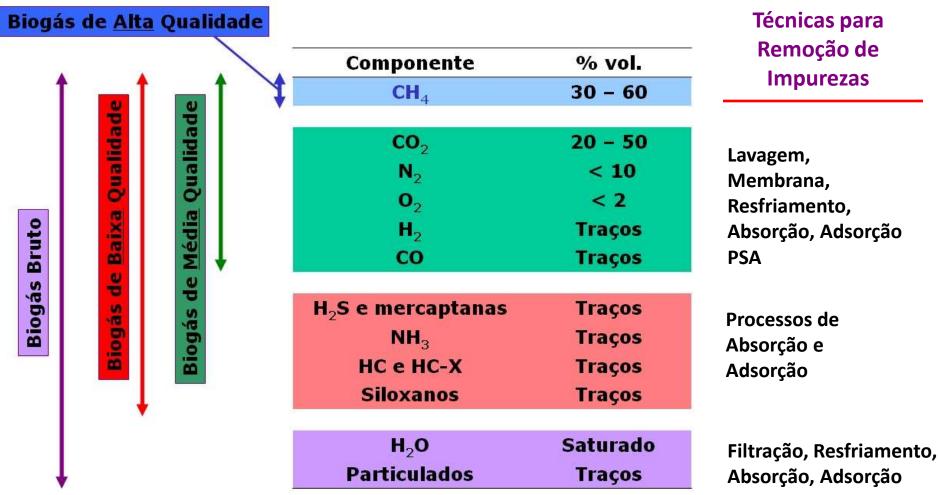
Biogás

- Principais componentes do Biogás: CH₄, CO₂, H₂S, NH₃
- Outros componentes:

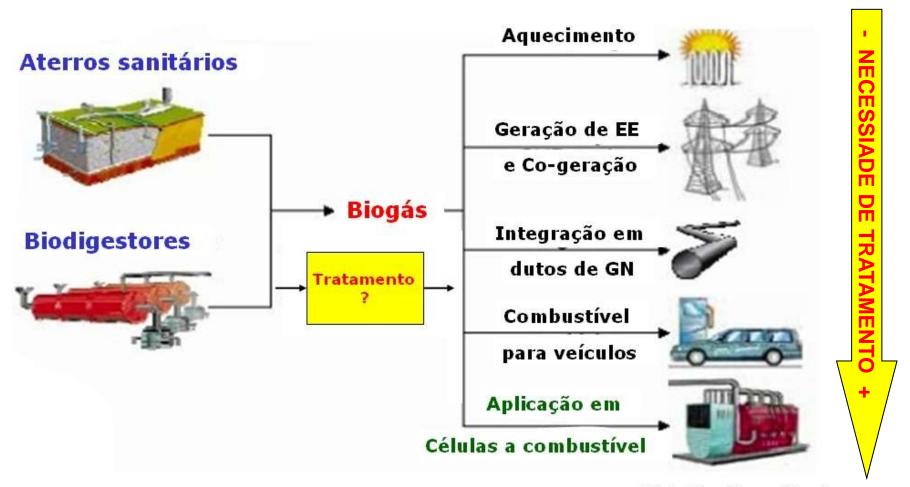
```
CO, N_2, O_2, H_2, HC's, HC-X (X= Cl, F, Br), H_2O, siloxanos, sólidos particulados (poeiras)
```

- O teor de metano define o conteúdo energético do Biogás:
- 10% (vol.) de CH₄ => 1 kWh/m³;
- 1 kWh = $0,172 \text{ m}^3$, 1 TEP = 2.000 m^3 ;
- Biogás ($\sim 55-60\%$ de CH₄) => 14,9 e 20,5 MJ/m³, cerca da metade do poder calorífico do gás natural (GN);
- Biogás é classificado em função do conteúdo energético e do teor (e tipos) de impurezas;

Biogás


- Biogás => Problema: variabilidade da composição química em função da fonte, do tempo e das condições ambientais (aterros sanitários) e de processamento, menor relevância no caso de biodigestores;
- Biogás => necessidade de condicionamento & purificação;
- Água => formação de soluções ácidas, corrosão de equipamentos, tanques e dutos;
- CO₂ => reduz o conteúdo energético (poder calorífico) do Biogás;
- H₂S => elevada toxicidade, emissões, problemas de corrosão, formação de SO₂/SO₃ em queimadores;
- HC's pesados e HC-X => emissões, problemas de corrosão;
- Halógenos e Amônia => corrosão;
- Siloxanos => problemas de corrosão, formação de SiO₂, erosão, incrustações.

Tratamento & Qualidade do Biogás


- Em função do tipo de aplicação têm-se diversos processos e graus (Qualidades) de tratamento (condicionamento & purificação) do Biogás:
- Biogás de Baixa Qualidade: produto com baixo valor energético e alto teor de impurezas, usado essencialmente para aquecimento nas proximidades da fonte de produção do biogás;
- Biogás de Média Qualidade: valores médios de conteúdo energético e teor de impurezas, podendo ser utilizado em aquecimento, motores a combustão e centrais de cogeração, idealmente nas proximidades da fonte de produção do biogás;
- **Biogás de Alta Qualidade:** essencialmente metano (biometano 95%-97% de CH₄), produto com alto valor energético e praticamente isento de impurezas, possuindo elevado valor agregado, podendo ser transportado por gasodutos e com potencial para utilização na produção de produtos químicos, em veículos e em geração de EE com alta eficiência (turbinas, células a combustível, etc.).

Tratamento & Qualidade do Biogás

Biogás para Geração de Energia

Adapted from Amonco/Ciemat

Biogás para Geração de Energia

Eficiência Emissões

Opções para Geração de Energia a partir do Biogás:

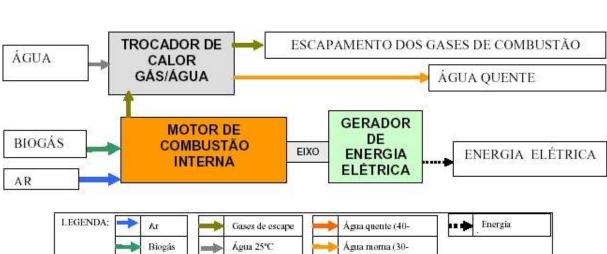
Tratamento do Biogás Purificação e Condicionamento

- Remoção de umidade e sólidos particulados (poeiras);
- Remoção de "gases-traço" (compostos sulfurados, halogenados, amoniacais e siloxanos);
- Redução do teor de CO₂;
- Tecnologias: Sistemas de lavagens de gases, torres e colunas de absorção, processos de separação por membranas, reatores de adsorção (processos heterogêneos).
- •Materiais típicos: sílica gel, alumina (Al₂O₃), materiais carbonáceos (carbono nanométrico), zeólitas (peneiras moleculares), metais nobres, etc.

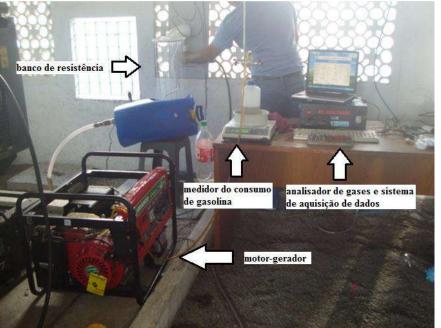
Biogás para Geração de Energia: Motores e motogeradores

Usina termoelétrica descentralizada para produção de energia elétrica e calor

Usina termoelétrica descentralizada com potências de 40 kW até 1 MW 12 - 300 Nm³ consumo de metano por hora 900 - 23.000 kWh por dia



Biogás para Geração de Energia: Motores e motogeradores



Uso do biogás como combustível para geração de energia elétrica em motores de combustão interna

Projeto Poli-13495A: LMT/Poli/Cepel

Razão ar-combustível:

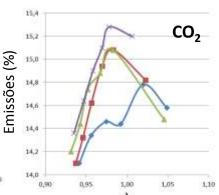
$$\left(\frac{A}{C}\right)_{\rm esteq.} = \frac{n_{ar} * M_{ar}}{n_{comb.}} * M_{comb.}$$

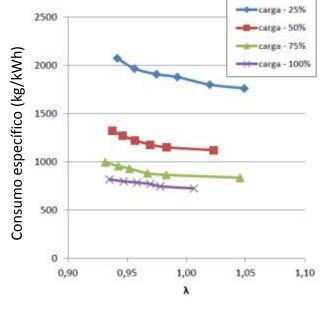
Razão de equivalência (λ):

 $\lambda = \frac{\left(\frac{A}{C}\right)_{real}}{\left(\frac{A}{C}\right)_{esten}}$

Instalação do motor com seus sistemas de

suprimento e monitoração




Emissões (%)

Fmissões (%)

Emissões (%)

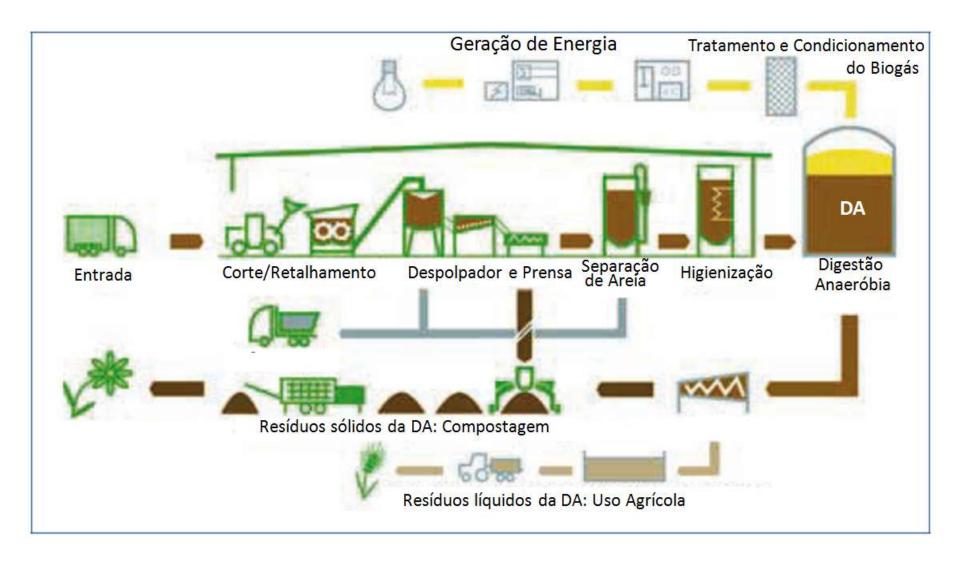
Emissões (%)

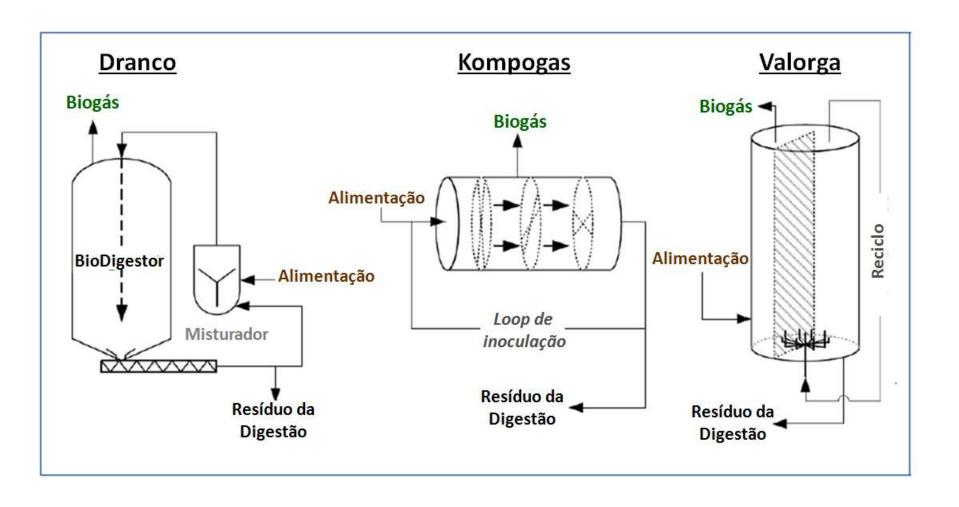
Medidor de vazão de biogás

Biogás para Geração de Energia: Motores e Turbinas

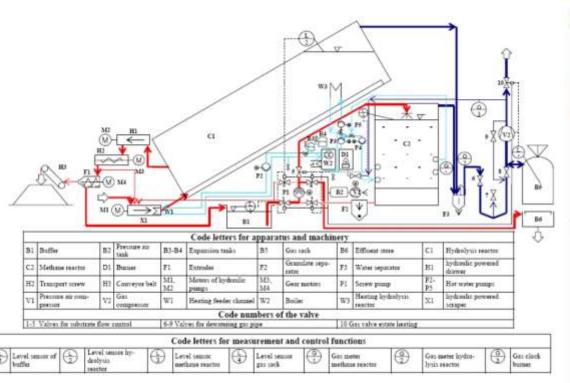
Caldeira operando com biogás

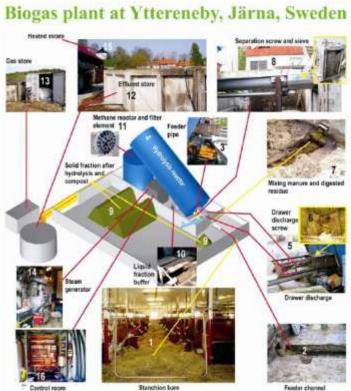
Microturbinas operando com biogás




Caminhões e ônibus movidos a biogás

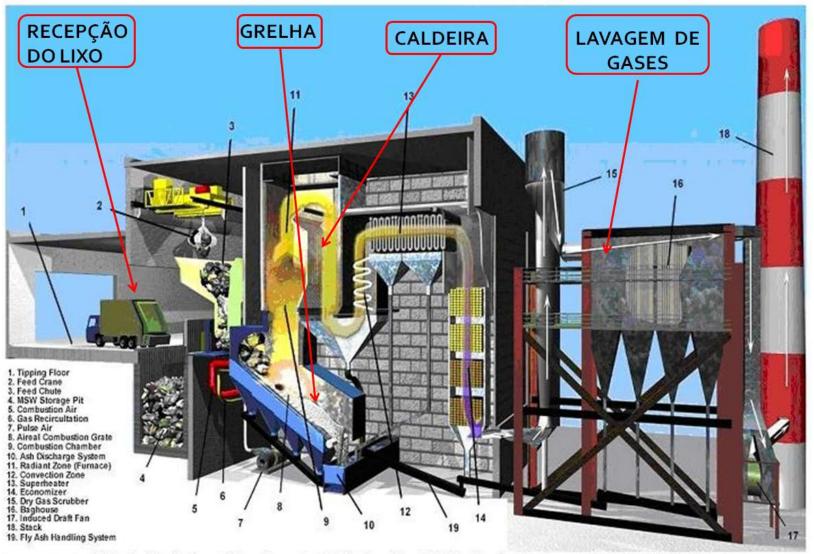
Linha de biogás Motor Soprador operando com biogás


Biogás para Geração de Energia: Usinas de geração de energia



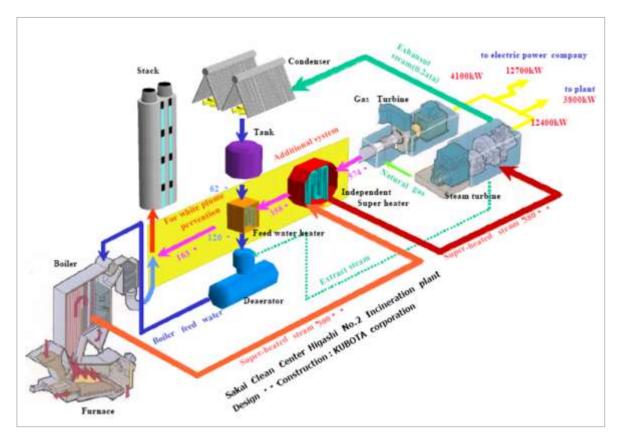
Tipos & Projetos de BioDigestores

Biogás para Geração de Energia: Usinas de geração de energia


Tecnologias de Incineração

A energia gerada é um **subproduto** do processo de destinação final dos resíduos

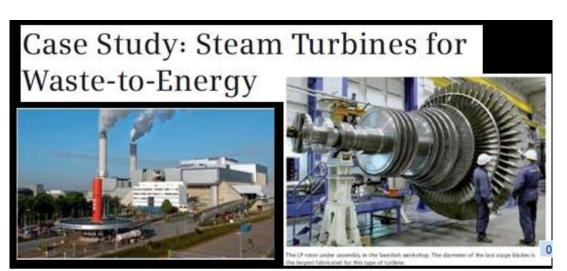
Tecnologias de Incineração

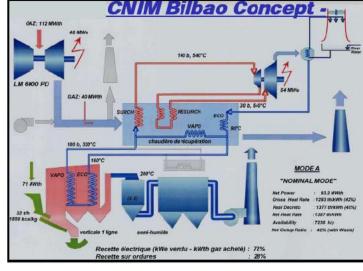

Usina LIXO-ENERGIA CONVENCIONAL ("MASS BURNING")

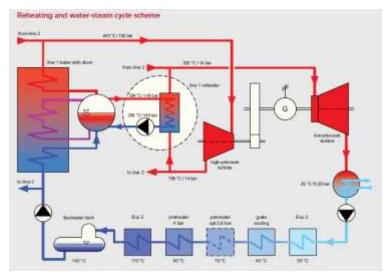
Waste to Energy

Geração de energia a partir da queima direta dos resíduos

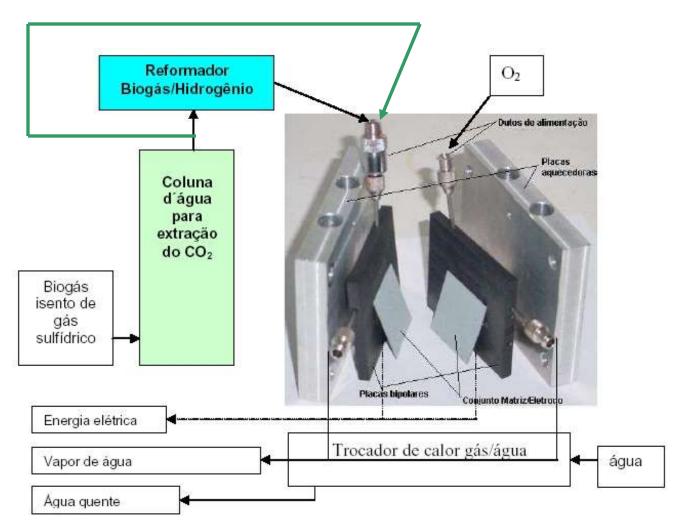
- ✓ Evitando Aterros Sanitários
- ✓ Reciclagem & Incineração
- ✓ Incrementando a Eficiência das Usinas de Incineração





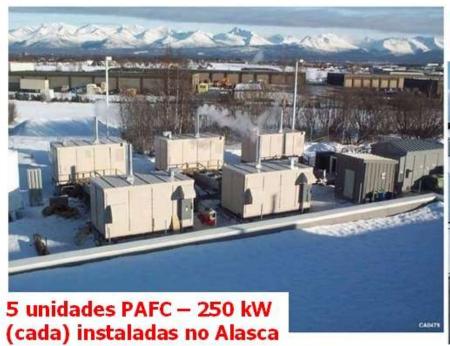

Waste to Energy

Usinas WTE são concebidas sob encomenda e podem operar com alta eficiência.



Left: The SST-700 RH installed in the plant, showing noise endosure (red) over the HP-module, generator and gear.
Right: SST-700 LP-module, condenser (green), LP inlet (silver), LP exhaust (brown).

Biogás para Geração de Energia: Células a combustível (CaC)


Tipos de Célula a Combustível

CaC de ALTA temperatura de operação (650-1000°C) => Alimentação com Metano

Aplicações Típicas	Equipamentos Eletrônicos Portáteis		Geração Residencial		Veicular	Geração Distribuída		
Potência (Watts)	1	10	100	1K	10K	100K	1M	10M
Principais Vantagens	Densidade de energia mais elevada que as baterias,			Alta eficiência, En nulas		missões	nissões Alta eficiência, Menos poluição,	
Faixa de Aplicação dos Diferentes Tipos de				340			100-100	100
Aplicação dos Diferentes			PEN	AFC		SO)FC	FC

CaC de baixa temperatura de operação ($< 250^{\circ}$ C) => Necessidade de Reforma para gerar H₂.

Célula a Combustível Aplicações em Geração Estacionária

Planta MCFC – 2 MW instalada em Santa Clara, Califórnia

PEMFC - 5 kW

PAFC - 200 kW

Célula a Combustível Aplicações em Geração Estacionária

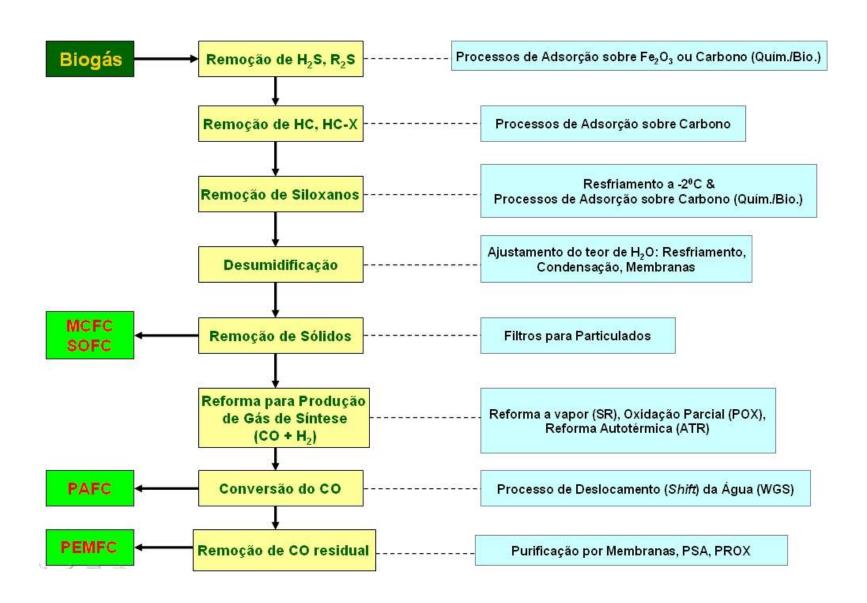
Biogas Fuel Cell Power Plant.

Célula a Combustível Aplicações em Geração Estacionária

POSCO Energy TCS1 Fuel Cell Energy Park

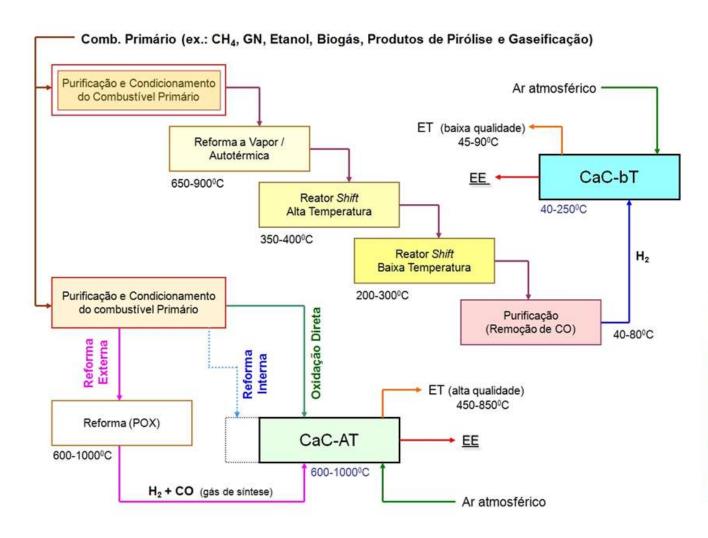
Molten Carbonate Fuel Cell (MCFC) Generation: 11.2 MW Daegu City, South Korea. Electrical Efficiency 47%.

http://www.cleanenergyactionproject.com/CleanEnergyActionProject/CS.POSCO_Energy_TCS1_Fuel_Cell_Energy_park___Fuel_Cell_Case_Study.html

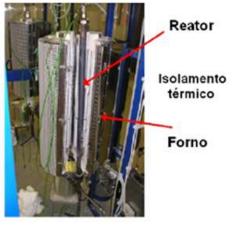

Biogás para CaC

- CaCs de Alta Temperatura de Operação (SOFC e MCFC):
 - O tratamento prévio do Biogás é relativamente "menos rigoroso": remoção de compostos sulfurados, halogenados e siloxanos;
 - São mais tolerantes às impurezas;
 - Podem operar com um combustível de composição química mais ampla (misturas de hidrogênio, monóxido e dióxido de carbono).
- CaCs de Baixa Temperatura de Operação (principalmente PEMFC):
 - Considerável tratamento prévio do Biogás: remoção de compostos sulfurados, halogenados, siloxanos, amônia e derivados;
 - São muito sensíveis às impurezas;
 - Exigem processamento do gás de síntese (H₂ + CO) produzido na reforma do biogás de forma a reduzir a concentração de CO para valores inferiores a 10 ppm.

Biogás para CaC


Componente	AFC	PAFC	PEMFC	MCFC	SOFC
Temperatura de Operação (ºC)	100	70 - 90	200	650	700 - 1000
H ₂	Combustível	Combustível	Combustível	Combustível	Combustível
CH ₄ , HC's	Veneno	Inerte	Inerte	Combustivel	Combustível
CO ₂	Veneno	Inerte / Diluente	Inerte / Diluente	Reciclado	Inerte / Diluente
со	Veneno < 30 ppm	Veneno < 500 ppm	Veneno	Combustível	Combustivel
NH ₃	Combustivel	Veneno	Veneno	Combustível	Combustível
Sulfurados:	Veneno	Veneno	Veneno	Veneno	Veneno
H ₂ S, R ₂ S, COS		< 50 ppm	< 200 ppb	< 0,5 ppm	< 1 ppm
Halogenados: H-X, R-X	Veneno	Veneno < 4 ppm	Veneno	Veneno < 0,1 ppm	Veneno < 1 ppm

Tratamento de Biogás para CaC


Combustíveis para CaC

Exigências no Processamento de Combustíveis Primários

Ex. de sistema de purificação

Reator de Reforma

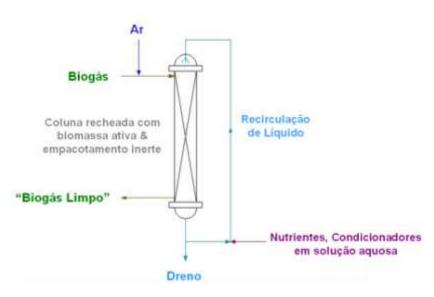
Tratamento de Biogás e Produção de Hidrogênio

Produção de H₂: Reforma de HCs

Reforma de Hidrocarbonetos:

$$C_m H_n + H_2 O = m CO + (n/2 + m) H_2 (\approx 650-800^{\circ}C)$$

Reação de Deslocamento (Shift):


$$C_xH_yO_z + (x - z) H_2O = x CO + (x + y/2 - z) H_2$$

 $CO + H_2O = CO_2 + H_2$

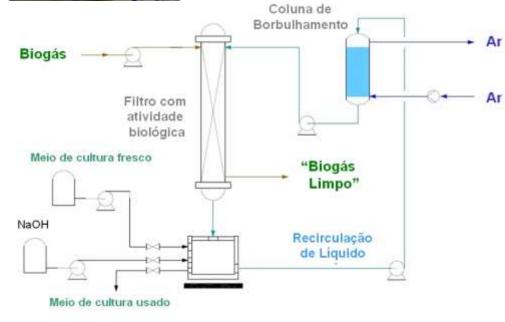
Oxidação Parcial:

$$CO + 1/2 O_2 = CO_2$$

 $C_x H_y O_z + (x + y/4 - z/2) O_2 = x CO_2 + (y/2) H_2$

Oxidação Parcial do H_2 (indesejável): $H_2 + 1/2 O_2 = H_2O$

Tratamento de Biogás para CaC

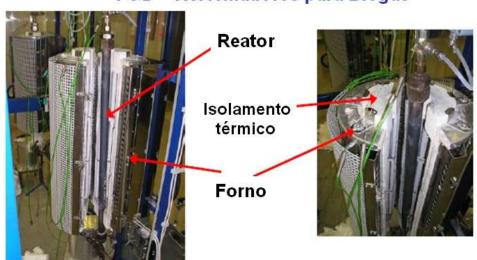


Filtros Químicos ou Biológicos para Biogás

Tratamento de Biogás para CaC

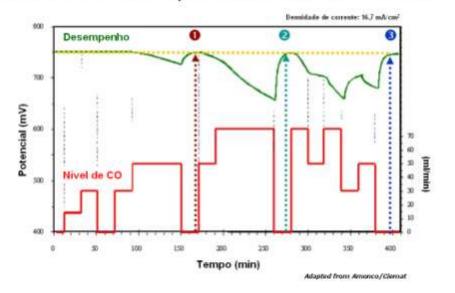
P&D - Métodos e Processos para Purificação de Biogás

Teor de H₂S em biogàs oriundo de aterro sanitàrio (Pinto, Espanha)


Adapted from Ciemat

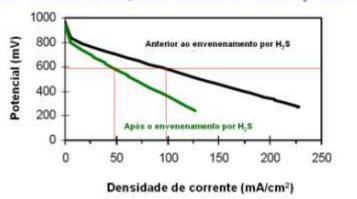
Após o tratamento

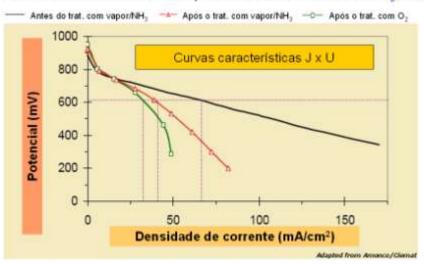
Tratamento com Filtro Químico


P&D - Reformadores para Biogás

MCFC - 300W uso de Biogás

Influência de contaminantes em PEMFC

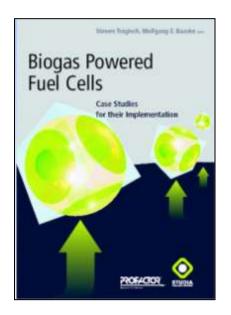

Perdas reversiveis de desempenho: Influência do teor de CO em PEMFC

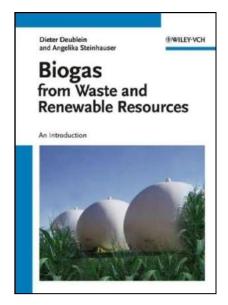

CO => eficiência e estabilidade são restauradas na ausência do contaminante.

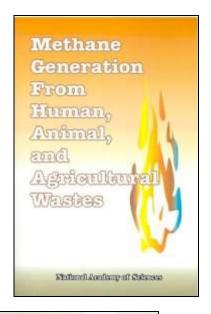
H₂S, NH₃ => eficiência e estabilidade são comprometidas, mesmo na ausência dos contaminantes.
 Destruição de sítios catalíticos e/ou do eletrólito.

Perdas irreversíveis de desempenho: Influência do teor de H₂S em PEMFC

Perdas irreversíveis de desempenho: Influência do teor de NH, em PEMFC

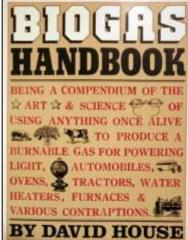

Desafios & Perspectivas

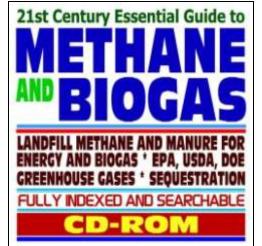

- Otimizar a composição química do Biogás (redução/eliminação dos "gases-traço") mediante a seleção e condicionamento dos materiais alimentados a biodigestores & do controle apurado das condições de digestão anaeróbia;
- Desenvolvimento de processos economicamente viáveis para a produção e purificação de Biogás para uso em geração de energia => Produzir Biometano;
- Aumento da eficiência e da vida útil dos motogeradores, das células a combustível e dos reformadores de Biogás (se for o caso);
- Identificação & desenvolvimento dos "nichos de mercado para geração com Biogás";
- Geral: Custo (produção, instalação e manutenção);


Considerações Finais


- 🛨 Existe grande potencial para uso de Biogás na geração de energia;
- 🖈 A injeção de Biogás tratado (Biometano) em redes de gás (GN) é uma tendência;
- ★ A disseminação do uso de Biogás em sistemas à base de Células a Combustível depende fundamentalmente da economicidade da produção de Biogás com características (pureza) adequadas e da redução de custo das CaC (US\$/kW);
- ★ Células a combustível que operam em altas temperaturas (MCFC e SOFC) têm sido mais enfatizadas para uso com biogás, uma vez que os sistemas de tratamento prévio do biogás tendem a ser mais simples e menos onerosos;
- ★ As plantas integradas com aproveitamento de combustíveis derivados de resíduos podem se beneficiar de subsídios em um cenário de incentivos a implementação de tecnologias eficientes e limpas.

Indo além...





Obrigado pela Atenção!

Contato: José Geraldo de Melo Furtado Pesquisador - DTE <u>furtado@cepel.br</u> (21) 2598 6069

